Aconcagua river estuary Tidal hydrodinamic

J.J. Fierro

- Tidal wave in shallow water estuaries is afected by non lineal mechanisms generating sub-harmonic and composed waves (Speer *et al.*, 1991; Lessa, 1996).
- Amplitude and phase distortions of the tide wave are quantified through relationships between M_4 and M_2 constituents (Pugh, 1987).
- Variations at the river flow produce modifications of the tidal wave (Godin 1981; Parker, 1991).

Introduction

Hydrology

- Aconcagua basin is located at the semi-arid mixed regime river area (Niemeyer & Cereceda, 1984), with irregular hydrological and pluviometric patterns (Allesch & Constanzo, 1997).
- Tributaries originates at the inner Andes. River discharge is permanent and most intense in winter and summer (Niemeyer & Cereceda, 1984).

Objetive

• To describe monthly variability at the tidal wave during its propagation in the Aconcagua estuary.

Area of study

Aconcagua river cross sections

-

Data analisis

Analisys	Description					
Post- Proccessing	Sea level Inverted barometer correction. Mean and trend substraction. Filtering by Lanczos Cosine 121 weight, 40 hours. High frequency series. Harmonic analysis on monthly series at each place (Foreman, 1993). Spectral analysis on monthly series at each place . Tidal wave distortion quantification. River flow influence description.					

Daily mean river flow

Daily mean river flow in Aconcagua estuary

Vertical pattern temperature, salinity and current velocity in Concón bridge at anual cycle

Jul

Ago Sep

Oct Nov Dec Jan Feb Mar Apr May Jun

High water

Sea Level Observation

Sea level high frequency signal

Date	Flow	Tidal max range (m)					
	(m³s⁻¹)	Higuerillas	Concón bridge	RPC	ESVAL		
Feb. 28 th	8,7	1,57	1,34	1,33	0,57 (36,3%)		
Dic. 19 th	106,2	1,24	0,57	0,34	0,12 (9,7%)		

Ing. Planta ESVAL

Sea level low frequency signal

Date	Flow	River max height(m)					
	(m³s-1)	Higuerillas	Pte. Concón	RPC	ESVAL		
May. 26 th	147,4	1,21	2,00	2,45	3,25		
Jul. 23 th	433,0	1,26	1,54	2,65	3,36		
Dry season		1,21	1,54	1,54	1,66		
lce melts season		1,18	1,67	1,84	2,46		

Sea level. River flow influence at summer season.

Sea Level. River flow influence in winter

Tidal amplitude constituents periodograms

Harmonic waves relative amplitude

Tidal wave distortion

Conclusiones

- The mixed semidiurnal tidal wave is progressively distortioned through the estuary, experiencing a strong distortion at the ESVAL sector.
- The principal harmonic constituents transfer its energy to shallow water constituents along the estuary. Sub-harmonic and composed constituents strongly amplify their energy at the upper estuary.
- Freshwater inflow determines seasonal river level and tidal range through the estuary. Extraordinary winter floods strongly modify tidal wave propagation pattern through the estuarine zone of the Aconcagua river.

